On congruences involving Apéry numbers
نویسندگان
چکیده
In this paper, we mainly establish a congruence for sum involving Apéry numbers, which was conjectured by Z.-W. Sun. Namely, any prime p > 3 p>3 and positive odd integer alttext="m"> m encoding="application/x-tex">m , prove that there is alttext="p"> encoding="application/x-tex">p -adic alttext="c Subscript m"> c encoding="application/x-tex">c_m only depending on such ∑ k = 0 −<!-- − <mml:mn>1 ( 2 + stretchy="false">) A ≡<!-- ≡ <mml:mo>( ) mod width="0.333em" , encoding="application/x-tex">\begin{equation*} \sum _{k=0}^{p-1}(2k+1)^{m}(-1)^kA_k\equiv c_mp\left (\frac {p}{3}\right )\pmod {p^3}, \end{equation*} where alttext="upper sigma-summation j StartBinomialOrMatrix Choose EndBinomialOrMatrix squared squared"> j class="MJX-TeXAtom-OPEN"> maxsize="1.2em" minsize="1.2em">( class="MJX-TeXAtom-CLOSE"> minsize="1.2em">) encoding="application/x-tex">A_k=\sum _{j=0}^{k}\binom {k}{j}^2\binom {k+j}{j}^2 the number alttext="left-parenthesis period right-parenthesis"> . encoding="application/x-tex">(\frac {.}{p}) Legendre symbol.
منابع مشابه
Congruences Involving Catalan Numbers
In this paper we establish some new congruences involving Catalan numbers as well as central binomial coefficients. Let p > 3 be a prime. We show that
متن کاملSome Congruences Involving Euler Numbers
In this paper, we obtain some explicit congruences for Euler numbers modulo an odd prime power in an elementary way.
متن کاملCongruences involving Bernoulli and Euler numbers
Let [x] be the integral part of x. Let p > 5 be a prime. In the paper we mainly determine P[p/4] x=1 1 xk (mod p2), p−1 [p/4] (mod p3), Pp−1 k=1 2 k (mod p3) and Pp−1 k=1 2 k2 (mod p2) in terms of Euler and Bernoulli numbers. For example, we have
متن کامل, arXiv : 0709 . 1665 CONGRUENCES INVOLVING CATALAN NUMBERS
In this paper we establish some new congruences involving Catalan numbers as well as central binomial coefficients. Let p > 3 be a prime and let a be any positive integer. We show that
متن کاملGeneral Congruences Involving the Bernoulli Numbers.
I The seed used was kindly supplied by the California Packing Corporation. 6 The assays for p-amino benzoic acid were carried out by Prof. G. W. Beadle and Prof. E. Tatum, Stanford University, using a mutant of Neurospora crassa for which p-amino benzoic acid is an essential supplement. 7In 5. experiments sulfanilamide or its derivatives were applied to intact tomato plants grown in the greenho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2023
ISSN: ['2330-1511']
DOI: https://doi.org/10.1090/proc/16387